

Model aluminum metal stud ceiling system LINEAR VARIO LAMELA manufactured by "Hecht & Efraim" Israel.

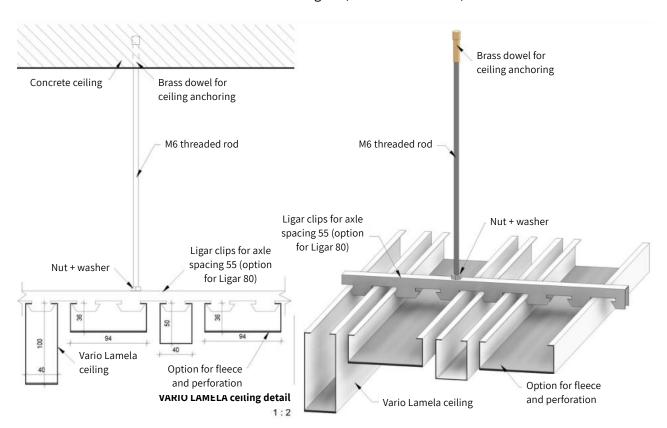
- Metal thickness 0.6 mm, length up to 3000 mm, widths in various sizes.
- Electrostatic powder coating with a thickness of at least 30 microns, color according to RAL 20% gloss matte finish.
- Serrated upper Ligar main carrier model HOC 55 in black, including a steel hanging system.
- Installation according to manufacturer's instructions No. 19364.
- 10-year warranty.
- Includes manufacturer's installation and maintenance instructions.
- Upper fasteners approved by a structural engineer.
- Meets the requirements of standard 921.
- The tile is coated with hot-dip galvanized zinc and painted with epoxy polyester paint in a RAL color of your choice.

- > Fast thermal exchange.
- > High noise absorption capacity.
- Monolithic appearance that allows for unloading.
- Recycled aluminum composition.

Wood textures

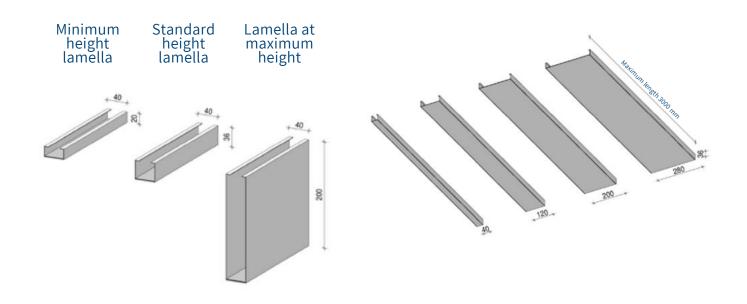
walnut oak

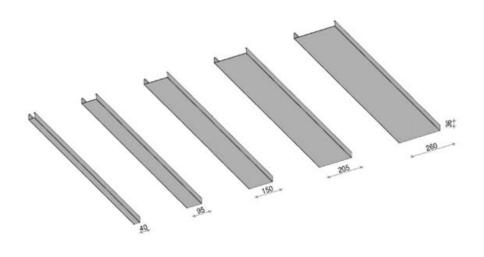
Perforation Options


Can be ordered in all RAL colors

Typical detail

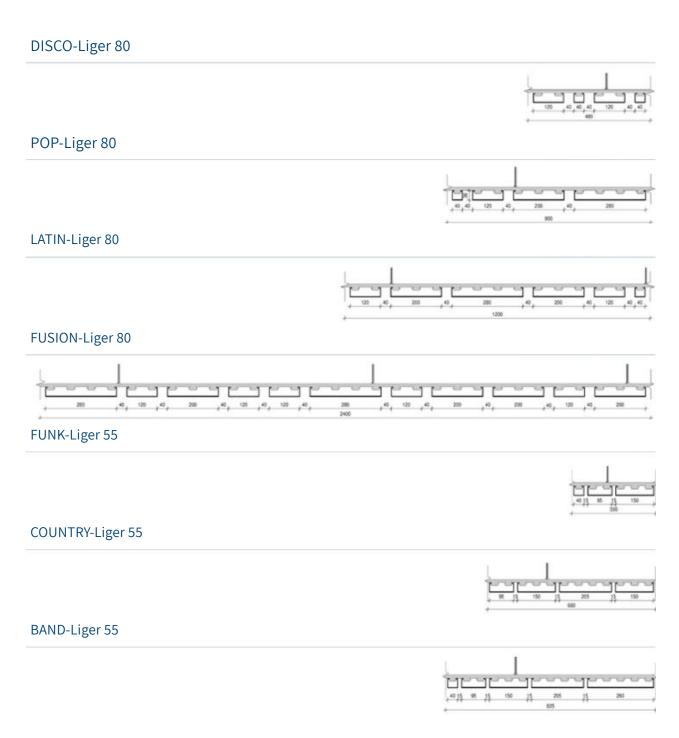
- Lamelas with a spring-loaded upper bend, connected to a universal serrated upper girder.
- 55 mm serrated upper girder that creates a 19 mm gap between the lamellas.
- 80 mm serrated upper girder that creates a 44 mm gap between the lamellas.
- Lighting fixtures and/or other electromechanical systems can be integrated as a replacement for the metal lamellas.
- Electrostatic painting and powder coating according to the RAL color palette.
- The lamellas can be ordered in different heights (20 mm to 200 mm).



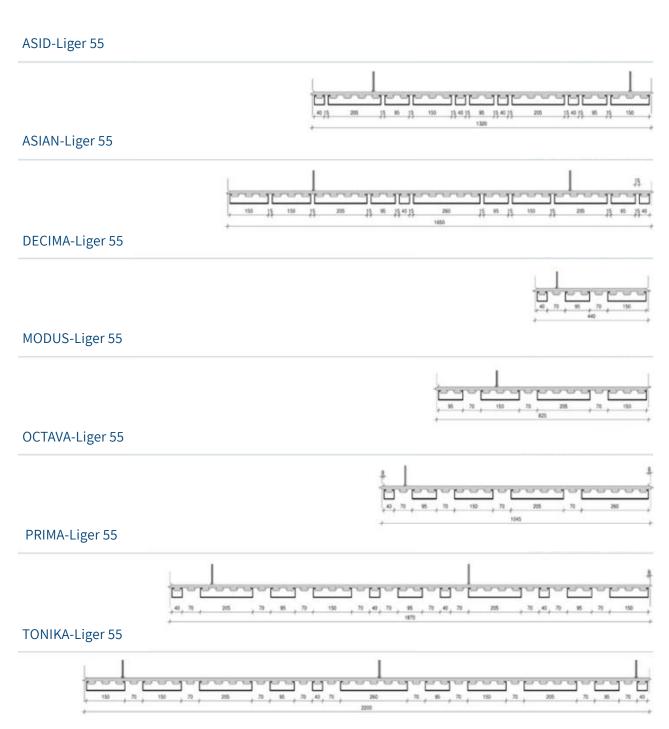

Types of rhythms

Types of lamellas in different heights

Types of lamellas for Liger 80



Types of lamellas for Liger 55



Types of rhythms

Types of rhythms

Types of perforations

A variety of perforation options are offered to the architect who can choose the size, shape and density of the perforation according to his wishes and in accordance with his various needs.

This choice is another layer of the service we provide to each customer and is designed to meet his special taste and needs.

This choice is an	other layer of the service we provi	9011	u is designed to mee	et ills special taste and needs.	9022		
N.R.C 0.65*	Round perforation straight rows 9 mm	• • • •	N.R.C 0.65*	mm round hole 9	• • • •		
N D C 0 75**	Perforation area 11%	• • • •	N.R.C 0.78**	Perforation area 22%	• • • •		
N.R.C 0.75**	Max. tin width for punching 625 mm	• • • •	N.R.C U.76	Max. tin width for punching 625 mm	• • • •		
db 40***	Perforation max. 600 mm	• • • •	db 45***	Perforation max. 600 mm	• • • •		
		1510			1522		
N.R.C 0.70*	Round perforation straight rows 1.5 mm		N.R.C 0.75*	Round perforation 1.5 mm			
N.R.C 0.75**	perforation area 10%		N.R.C 0.85**	Perforation area 22%			
N.R.C 0.75	Max. tin width for punching 1250 mm		N.R.C 0.05	Max. tin width for punching 1250 mm			
db 40***	Max. perforation 1180 mm		db 41***	Max. perforation 1180 mm			
		0213			2026		
N.R.C 0.70*	Round perforation straight rows 2 mm		N.R.C 0.78*	mm round hole 2			
N.R.C 0.80**	Perforation area 13%		N.R.C 0.89**	Perforation area 26%			
N.R.C 0.00	Max. tin width for punching 1250 mm		N.R.C 0.03	Max. tin width for punching 1250 mm			
db 50***	Max. perforation 1180 mm		db 41***	Max. perforation 1180 mm			
	6041						
N.R.C 0.85*	Dense circular perforation 6 mm		N.R.C 0.81*	Round hole 3 mm			
N.R.C 0.94**	Perforation area 41%		N.D.C.0.02**	Perforation area 11%			
N.R.C 0.94	Max. tin width for punching 1250 mm		N.R.C 0.92**	Max. tin width for punching 625 mm			
db 40 36***	Max. perforation 11800 mm		db 37***	Perforation max. 600 mm			
		6012			6016		
N.R.C 0.70*	Round perforation straight rows 6 mm	• • • • •	N.R.C 0.75*	Round hole 6 mm			
N.R.C 0.80**	Perforation area 12%		N.R.C 0.85**	Perforation area 16%			
N.R.C U.8U	Max. tin width for punching 1250 mm	• • • • •	N.R.C U.05	Max. tin width for punching 1250 mm			
db 50***	Max. perforation 1180 mm		db 45***	Max. perforation 1180 mm			

^{*}Average noise absorption with the addition of acoustic fleece gluing **Average noise absorption (with the addition of acoustic fleece gluing and the laying of a 16.1 kg per cubic meter compressed glass wool mattress) ***Average noise absorption (with the addition of acoustic fleece gluing and the laying of a rock wool mattress Compressed with a thickness of "16.1 kg per cubic meter) and a metal back panel cover

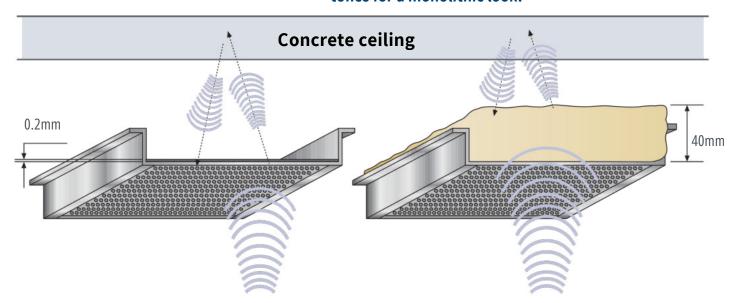
Types of perforations

A variety of perforation options are offered to the architect who can choose the size, shape and density of the perforation according to his wishes and in accordance with his various needs.

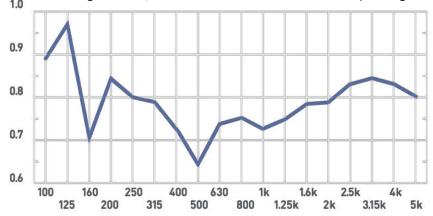
This choice is another layer of the service we provide to each customer and is designed to meet his special taste and needs.

		3028			1507
N.R.C 0.78*	Round perforation straight rows 3mm		N.R.C 0.70*	Round perforation straight rows 31.5mm	
N.R.C 0.89**	Perforation area 28%		N.R.C 0.75**	Perforation area 7%	
	Max. tin width for punching 500 mm		N.N.C 0.13	Max. tin width for punching 1250 mm	
db 41***	Max. perforation 380 mm		db 40***	Max. perforation 1180 mm	
		S5030			R2468
N.R.C 0.75*	Square perforation 5.5X5.5 mm		N.R.C 0.65*	Random round perforation 2X4X6X8 mm	
N D C 0 95**	perforation area 30%		N.R.C 0.75**	Perforation area 11%	
N.R.C 0.85**	Max. tin width for punching 625 mm		N.R.C 0.75***	Max. tin width for punching 1250 mm	
db 47***	Perforation max. 600 mm		db 45***	Max. perforation 1180 mm	
		S8011			S8044
N.R.C 0.61*	8x8 mm square perforation		N.R.C 0.85*	8x8 mm square perforation	
N.R.C 0.75**	Perforation area 11%		N.R.C 0.94**	Perforation area 44%	
N.R.C 0.75	Max. tin width for punching 1250 mm		N.R.C 0.34	Max. tin width for punching 1250 mm	
db 40 42***	Max. perforation 1180 mm		db 40 36***	Max. perforation 1180 mm	
		S1012			S1036
N.R.C 0.65*	Dense circular perforation 10X10 mm		N.R.C 0.85*	Round perforation 10x10 mm	
N.D.CO.TEXX	Perforation area 12%		N.R.C 0.94**	Perforation area 36%	
N.R.C 0.75**	Max. tin width for punching 625 mm	-	N.R.C 0.94***	Max. tin width for punching 625 mm	
db 40***	Perforation max. 600 mm		db 45***	Perforation max. 600 mm	
		D170			OB40
N.R.C 0.75*	Diamond punch 9X20 mm	XXXXXXXXX	N.R.C 0.45*	Oval perforation 4X15 mm	
N.R.C 0.84**	Perforation area 70%		N.R.C 0.95**	Perforation area 25%	
	Max. tin width for punching 625 mm			Max. tin width for punching 625 mm	
db 42***	Perforation max. 600 mm		db 39***	Perforation max. 600 mm	11111111

^{*}Average noise absorption with the addition of acoustic fleece gluing **Average noise absorption (with the addition of acoustic fleece gluing and the laying of a 16.1 kg per cubic meter compressed glass wool mattress) ***Average noise absorption (with the addition of acoustic fleece gluing and the laying of a rock wool mattress Compressed with a thickness of "16.1 kg per cubic meter) and a metal back panel cover


isolation

The Hecht Ephraim company is a representative of the Royaline company - Germany.


Non-woven acoustic fleece, with a noise absorption capacity of up to 0.8 (reduction of about 10 decibels) with a thickness of 0.2 mm is affixed with acoustic glue on the back of the ceiling and wall units.

advantages

- High noise absorption, effective handling of different decibel levels (see diagram).
- It does not detach and does not move from the unit, so removing the trays for the purpose of maintaining the systems above them and re-placing them afterwards is easy, fast and simple.
- Meets the requirements of TI 921.
- The insulation does not absorb moisture.
- •Acoustic insulation in black tones that emphasizes the appearance of perforation and alternatively in white tones for a monolithic look.

*Additional glass wool/rocks can be added above the tile depending on the ceiling model.

